Journal of Organometallic Chemistry, 401 (1991) 249–260 Elsevier Sequoia S.A., Lausanne JOM 21230

Difluorocarbene insertion into Si-H bonds: the preparation and properties of difluoromethylsilanes *

H. Bürger, R. Eujen and P. Moritz *

Anorganische Chemie, Fachbereich 9, Universität-Gesamthochschule, W-5600 Wuppertal (Germany) (Received June 25th, 1990)

Abstract

Difluorocarbene, CF₂, generated by thermal decomposition of CF₃SiF₃ at 100 °C, has been found to insert into the Si-H bonds of halosilanes SiH₃X (X = F, Cl, Br, I), methylhalosilanes CH₃SiH₂X (X = Br, Cl) and (CH₃)₂SiHCl, and disiloxane (SiH₃)₂O. Use of excess of the CF₂-source CF₃SiF₃ and of pressure favour the formation of the di-insertion products (CHF₂)₂SiHX and (CHF₂)₂(CH₃)SiX. (CHF₂)₃SiCl was identified among the products formed in the co-thermolysis of CF₃SiF₃ and (CHF₂)SiH₂Cl. In contrast, organosilanes R_nSiH_{4-n} (R = Me, Ph; n = 0-4), dihalosilanes SiH₂X₂ and RSiHX₂, trihalosilanes HSiX₃ and tetrahalosilanes SiX₄ do not react with CF₂ under these conditions. The reactivity and selectivity of difluorocarbene is discussed in terms of steric and electronic parameters. A kinetic deuterium effect, k(SiH)/k(SiD) 1.14, has been observed for the insertion into MeSiH₂Cl. The mostly novel products were characterized by vibrational and multinuclear NMR spectroscopy. Difluoromethylsilane, (CHF₂)SiH₃, has been obtained from (CHF₂)SiH₂Cl and LiAlH₄ in almost quantitative yield, and its vibrational spectrum has been recorded and interpreted with the assistance of a normal coordinate analysis.

Introduction

The rapid elimination of difluorocarbene from trifluoromethylsilanes restricted preparation of such silanes for a long time [1]. Now that trifluoromethylsilanes are available in preparative-scale quantities [2-4], such elimination of difluorocarbene could have a synthetic potential. For example, CF_3SiF_3 [5] appears to be a particularly clean source of CF_2 ; thus SiF_4 is the only detectable by-product of the decomposition, which starts at 80 °C and has a half-life of 7 min at 100 °C. Alternative CF_2 generators such as tetrafluoroethylene oxide [6] or difluoroaziridine [7] require considerably higher temperatures or photolytic conditions [8]. Other convenient CF_2 sources such as $CF_3Sn(CH_3)_3$ [9], $CF_2CICOONa$ [10] or CF_3Hg derivatives [11], in addition to requiring high temperatures, have the disadvantage of either forming solid by-products or needing polar solvents.

It was found [12] that CF_3SiH_3 decomposes selectively to form SiH_3F and CF_2 at about 200 °C. In the absence of an efficient carbene trap the latter formally

^{*} Dedicated to Professor M. Baudler on the occasion of her 70th birthday.

undergoes an H/F exchange with the silane, and the CHF and CH₂ thus formed insert into Si-H bonds to form CH₂FSi and CH₃Si derivatives. Though no CHF₂Si species were detected under the conditions of the thermolysis all identified products could be explained in terms of a sequence of carbene insertion and elimination reactions. The primary step, the insertion of CF₂ into the Si-H bond of SiH₃F to yield CHF₂SiH₂F, was verified independently [12].

These observations prompted us to investigate in some detail the reaction of CF_2 with silanes which possess Si-H bonds and to explore the potential of CF_2 insertions for the selective synthesis of diffuoromethylsilanes.

CF₂ insertion reactions

Trifluoro(trifluoromethyl)silane, CF_3SiF_3 , is a particularly useful source for difluorocarbene. Firstly, its moderate thermal stability allows gas phase manipulations at ambient temperature, and secondly the gaseous byproduct of the decomposition, SiF_4 , can be easily separated from any CF_2 insertion product. The handicap of CF_3SiF_3 , its poor availability [3], has now been overcome by an improved synthesis of its precursor CF_3SiCl_3 , which was obtained from $SiCl_4$ and $P(NEt_2)_3/CF_3Br$ [2] with a yield of 50% when benzonitrile was employed as a solvent (Eq. 1):

$$\operatorname{SiCl}_{4} \xrightarrow{\operatorname{P(NEt_2)_3/CF_3Br}} \operatorname{CF_3SiCl}_{3} \xrightarrow{\operatorname{SbF_3}} \operatorname{CF_3SiF_3} (1)$$

Thermolysis of CF₃SiF₃ at 100 °C produces SiF₄, C₂F₄ and cyclo-C₃F₆, and the same products are obtained in the presence of SiH₄, MeSiH₃, Me₃SiH or PhSiH₃ – no products formed by insertion of CF₂ into either the Si-H or the Si-C bond being detected by NMR spectroscopy. In contrast, CF₂ inserts smoothly into the Si-H bond of methyl-monohalosilanes, Me_nSiH_{3-n}X (n = 0-2), Table 1 (Eq. 2):

$$(CH_{3})_{n}SiH_{3-n}X + CF_{3}SiF_{3} \xrightarrow{100 \, {}^{\circ}C, 2h}{7-60 \, \text{bar}} (CHF_{2})(CH_{3})_{n}SiH_{2-n}X + SiF_{4}$$
(2)
(n = 0; X = F, Cl, Br, I)
(n = 1; X = Cl, Br)
(n = 2; X = Cl)

For a 1:1 ratio of the reactants, the yields of the CHF_2Si products as determined by ¹H NMR spectroscopy were 60–75% for SiH_3X , 40% for $MeSiH_2X$, and 30% for Me_2SiHCl . For $PhSiH_2Cl$, insertion to yield (CHF_2)PhSiHCl was proven by the observation of characteristic pattern of the latter in the ¹⁹F NMR spectrum, but no more than 5% was formed.

The insertion strongly depends on the pressure under which the reaction is carried out [13]. While no silanes containing CHF_2 groups were observed in the reaction with SiH_3Cl at a pressure of 0.2 bar, 5% conversion was achieved at 1.2 bar, and this was further raised to 63% at 7.4 bar. Further pressure increases did not change the conversion rate, but instead enhanced the amounts of bis(di-fluoromethyl)silane, $(CHF_2)_2SHCl$, being formed. Both the fraction of the latter and the total turnover were increased by employing an excess of the CF_2 source, Table 1 (Eq. 3).

$$\operatorname{Si}(\operatorname{CH}_{3})_{n}\operatorname{H}_{3-n}X \xrightarrow{\operatorname{excess } \operatorname{CF_{3}SiF_{3}}} (\operatorname{CHF}_{2})_{2}\operatorname{Si}(\operatorname{CH}_{3})_{n}\operatorname{H}_{1-n}X$$

$$(n = 0; X = \mathrm{F}, \operatorname{Cl}, \operatorname{Br})$$

$$(n = 1; X = \operatorname{Cl})$$

$$(3)$$

	-			
Silane	CF ₃ SiF ₃ : Silane molar ratio	Pres- sure ^b	Conver- sion ^c	Products (yield) ^d
SiH ₃ F	1.0	7	76	(CHF ₂)SiH ₂ F (35%)
-	1.5	18	100	$(CHF_2)SiH_2F/(CHF_2)_2SiHF(95/5)^e$
SiH ₃ Cl	1.2	0.2	0	
2	1.2	1.2	5	
	1.2	7	68	(CHF ₂)SiH ₂ Cl (60%)
	1.2	80	67	
	1.4	35	100	(CHF ₂)SiH ₂ Cl/(CHF ₂) ₂ SiHCl (95/5) ^e
	3.5	14	100	(CHF ₂)SiH ₂ Cl/(CHF ₂) ₂ SiHCl (75/25) ^e
SiH ₃ Br	1.9	18	66	$(CHF_2)SiH_2Br/(CHF_2)_2SiHBr(80/20)$
SiHII	1.0	21	60	(CHF ₂)SiH ₂ I
CH ₃ SiH ₂ Cl	1.0	21	40	(CHF ₂)(CH ₃)SiHCl (21%)
· -	1.6	65	52	(CHF ₂)(CH ₃)SiHCl/
				$(CHF_2)_2(CH_3)SiCl(80/20)^{e}$
CH ₂ SiH ₂ Br	1.0	20	40	$(CHF_2)(CH_3)SiHBr (20\%)$
(CH ₃) ₂ SiHCl	1.0	58	30	(CHF ₂)(CH ₃) ₂ SiCl (19%)
(CHF ₂)SiH ₂ Cl	3.0	31	60	(CHF ₂) ₂ SiHCl/
2,2				(CHF ₂) ₃ SiCl (80/20) ^e
(SiH ₃) ₂ O	2.8	32	100	[(CHF ₂)SiH ₂] ₂ O (23%)
C _c H _s SiH ₂ Cl	1.0	11	< 5	
0 5 2				

Conditions a and product distribution for the co-thermolysis of CF3SiF3 and monohalosilanes

Table 1

^{*a*} Co-thermolysis at 100 °C for 2 h. ^{*b*} In bar, calculated throughout this investigation on the basis of the ideal gas law. ^{*c*} Percentage of reacted silane. ^{*d*} Yields for isolated silanes. ^{*c*} Molar ratios determined by ¹⁹F NMR spectroscopy.

The co-thermolysis of $(CHF_2)SiH_2Cl$ with an excess of CF_3SiF_3 (1:2.9; 100 °C; 2 h) yielded 40% of $(CHF_2)_2SiHCl$ and also 10% of $(CHF_2)_3SiCl$.

Significant amounts of CH_2F -substituted silanes were detected in the co-pyrolysis of CF_3SiF_3 and SiH_3F , Table 2A. This presumably implies the formation via H/F scrambling of $(CHF_2)SiF_3$, which readily generates CHF. The latter can then insert into Si-H bonds to form the CH_2F groups [12].

The insertion of CF_2 is not limited to silvl halides. Disiloxane, $H_3SiOSiH_3$, is quantitatively converted into CHF_2 -containing silanes with an excess of CF_3SiF_3 (3:1), viz.

$$(SiH_{3})_{2}O \xrightarrow{CF_{3}SiF_{3}}_{100\,^{\circ}C, 2h} (CHF_{2}SiH_{2})_{2}O + (CHF_{2})SiH_{2}OSiH_{3} + (CHF_{2})_{2}SiHOSiH_{3} (63\%) (6\%) (15\%) + (CHF_{2})_{2}SiH_{2} (4) (9\%)$$

A further, as yet unidentified, compound containing a $(CHF_2)_2SiH$ unit makes up the remaining 7%. The predominance of the di-inserted symmetric over the asymmetric disiloxane clearly demonstrates that insertion of a second CF_2 at the same silicon atom is slower than that of the first CF_2 moiety.

Trisilylamine, $(H_3Si)_3N$, did not undergo insertion of CF_2 even when the CF_2 -precursor CF_3SiF_3 was employed in excess under the same conditions.

The presence of a second halogen function completely suppresses the insertion of CF₂. Thus, SiH₂X₂, CH₃SiHX₂, SiHX₃ and SiX₄ (X = Cl, Br, I) were quantitatively recovered from the co-thermolysis with CF₃SiF₃.

Table 2

Typical product distribution for the reaction of SiH_3F and CF_3SiF_3 and NMR identification (8 ppm) (A) Immediately after co-thermolysis, 2 h at 100 °C. (B) After additional storage for 5 days at room temperature

A		
(CHF ₂)SiH ₂ F	78%	a
(CHF ₂)SiHF ₂	3%	Ь
(CH ₂ F)SiF ₃	8%	b
(CH ₂ F)SiHF ₂	4%	b
(CHF ₂)(CH ₃)SiHF	< 0.5%	δ(H(CH ₃)) 0.5 ppm (ddt, 8.0, 2.7, 0.6 Hz)
(CHF ₂)SiH ₂ Cl ^c	4%	a
(CH ₂ Cl)SiF ₃ ^c	1%	δ (H) 2.8 (q, 2.6 Hz); δ (F) – 143.2 (t, 2.6 Hz)
В		
$(CHF_2)_2SiH_2$	37%	b
(CHF ₂)(CH ₂ F)SiF ₂	17%	$\delta(H(CHF_2))$ 5.9 (td, 44.8, 0.5 Hz);
		$\delta(H(CH_2F))$ 4.6 (d(t), 46.6, not resolved)
		$\delta(F(SiF_2)) - 151.2^{d}; \delta(F(CHF_2)) - 143.5 (d, 44.8 Hz);$
		$\delta(F(CH_2F)) = 285.4 (t, 46.7 Hz)$
(CHF ₂)SiF ₃	14%	b,d
(CHF ₂)SiH ₃	3%	<i>b</i>
$(CHF_2)_2SiF_2$	3%	δ (H) 5.8 (t, 44.3 Hz); δ (F(CHF ₂)) - 142.8 (dm ^e , 44.9 Hz);
		$\delta(F(SiF_2)) - 148^{d}$
(CH ₂ F)SiF ₃	3%	Ь
(CHF ₂)(CH ₂ F)SiH ₂	%	b
(CH ₂ Cl)SiF ₃ ^c	2%	δ (H) 2.8 (q, 2.6 Hz); δ (F) - 143.2 (t, 2.6 Hz)
(CHF ₂)(CH ₂ Cl)SiF ₂	7%	$\delta(H(CH_2CI))$ 2.9 (t, 3.5 Hz); $\delta(F(CHF_2))$ – 142.8 (dt, 44.8, 3.7 Hz)
		$\delta(F(SiF)_2)$ – 149.9 (ttd, 3.7, 3.5, 1.6 Hz)

^a See Table 3. ^b See Ref. 12. ^c Cl originating from CF₃SiF₂Cl, present as impurity in CF₃SiF₃. ^d Broad signal due to fluorine exchange. ^e AA'X₂X'₂ spin system.

A kinetic H/D isotope effect was revealed by means of ¹⁹F NMR spectroscopy in the co-thermolysis of equal amounts of CH₃SiH₂Cl and CH₃SiD₂Cl with CF₃SiF₃. Although the starting materials undergo H/D exchange with formation of CH₃SiHDCl even a ambient temperature, the ratio of the sum of the CHF₂-containing products (CHF₂)(CH₃)SiHCl and (CHF₂)(CH₃)SiDCl with respect to that of CDF₂ species gives k(SiH)/k(SiD) = 1.14. This determination was made possible by the large H/D isotope effect on the ¹⁹F NMR shifts, $\delta(CHF_2) - \delta(CDF_2) = 0.70$ and $\delta(CHF_2SiH) - \delta(CHF_2SiD) = 0.07$ ppm.

Physical and chemical properties

The (difluoromethyl)halosilanes are colourless volatile liquids which should be handled with great caution, e.g. $(CHF_2)SiH_2Cl$ is prone to explode at or below room temperature. The fluoride $(CHF_2)SiH_2F$ has a relatively high boiling point, 45°C as extrapolated from vapour pressure measurements, which lies above that, i.e. 27°C, of the chloride $(CHF_2)SiH_2Cl$. This is indicative of intermolecular interactions and these may also favour the facile decomposition of the fluoride, which proceeds quantitatively at 25°C within 5 days. The fast exchange on the NMR time scale of the silicon-bonded fluorine atoms of $(CHF_2)SiF_3$ or $(CHF_2)_2SiF_2$, which are present in the reaction mixture, indicates that this decomposition is catalyzed by HF which

is presumably formed by reaction with the glass walls. Among the complex decomposition products (see Table 2B) $(CHF_2)_2SiH_2$ was identified as the major component (37%), along with considerable amounts of $(CHF_2)(CH_2F)SiF_2$. The formation of these dimethylsilyl derivatives presumably involves participation of the CHF_2 group in an intermolecular exchange process. Generation of CF_2 , followed by its insertion into an Si-H bond of $(CHF_2)SiH_2F$ and H/F scrambling, or alternatively preferential insertion of CHF into an Si-F bond, is unlikely to occur under the conditions used. Furthermore the amount of CH_2F -containing silanes remains essentially unaltered. The unexpected appearance of CH_2Cl groups (see Table 2B) is due to the presence of some CF_3SiF_2Cl as an impurity in the starting material CF_3SiF_3 . After thermolysis the chlorine is found in $(CHF_2)SiH_2Cl$; in the subsequent decomposition it selectively replaces the fluorine of a CH_2F group.

 $(CHF_2)SiH_2Cl$ can be readily converted into diffuoromethylsilane, $(CHF_2)SiH_3$ (Eq. 5), which is colourless, stable gas, b.p. $-15^{\circ}C$. The latter was also detected as a final product in a scrambling process.

$$(CHF_2)SiH_2CI \xrightarrow{\text{LiAlH}_4} (CHF_2)SiH_3$$
(5)

Spectra

The variety and abundance of NMR-active nuclei (¹H, ¹⁹F, ¹³C and ²⁹Si) facilitates the unambiguous identification of even minor components in complex mixtures. In H-CF₂-SiH₂-X species the common CF₂SiH₂ moiety forms an AA'XX' spin system which, because of the large ²J(FF) coupling of ca. 400 Hz, gives rise to "first-order" triplets with an effective coupling constant of $(J_{AX} + J_{AX'})/2$. In the case of the disiloxane small long-range couplings induce slight distortions of the respective triplet structures.

The ¹⁹F NMR spectra of the chiral silanes (CHF₂)(CH₃)SiHX (X = Cl, Br) are characterized by well separated AB systems ($\delta_A - \delta_B \approx 1.53$ ppm (Cl), 1.80 ppm (Br) with ²J(FF) couplings of 391.9 and 387.8 Hz, respectively, Fig. 1. A simulation of the spectrum of the CH₃-proton decoupled ABXY system yields different ³J(HF) coupling constants, +4.5 and +8.7 Hz (X = Cl) and +4.8 and +9.2 Hz (X = Br), Table 3. An ABX-type pattern with slightly different ¹J(CF) couplings is also revealed by the ¹³C NMR spectra.

Significant four-bond couplings (J (FF), 2–4 Hz and J (FH), ca. 1 Hz) yield characteristic AA'X₂X'₂ patterns for bis(difluoromethyl)silanes. These might be further complicated by additional "first-order" couplings over three bonds, as in (CHF₂)₂SiH₂ [12], or the fluorines in a CF₂ group are magnetically inequivalent, as found in (CHF₂)₂SiMeCl. Simulation of the spectrum of the latter yielded ($\delta_A - \delta_B$) = 0.82 ppm and ${}^{2}J$ (FF) + 402.1 Hz, ${}^{2}J$ (HF) + 45.7 Hz, ${}^{4}J$ (FF) + 2.2 and + 3.4 Hz, ${}^{4}J$ (FH) + 0.5 Hz – the signs of the ${}^{2}J$ constants being adopted from the literature [12]. For the halides (CHF₂)₂SiHX, the AB-type pattern of the prochiral CF₂ units is hardly detectable. Thus, the difference of the ¹⁹F chemical shifts $\Delta(\delta(F^A) - \delta(F^B))$ is only 0.15 ppm for X = Br, and the central line of the multiplet in the proton-decoupled spectrum at a resonance frequency of 235 MHz shows a 1.4 Hz splitting.

Infrared and Raman spectra of the novel fluoromethyl silanes have been recorded. Those of difluoromethylsilane, $(CHF_2)SiH_3$, can be readily assigned by

Fig. 1. ¹H-decoupled (A) and undecoupled ¹⁹F NMR spectrum (B). (CHF₂)SiHCl(CH₃): circles, with ²⁹Si satellites denoted by full dots. (CHF₂)₂SiCl(CH₃): crosses.

comparison with CHF₂Cl [13] and CF₃SiH₃ [14]. In order to achieve a more quantitative description of the vibrational fundamentals and to obtain information on the strength of the Si–C bond, we performed a normal coordinate analysis [15], the results of which are shown in Table 4. The molecular geometry was based on that of CF₃SiH₃, and the mutual force field for the iteration procedure was constructed from those for CHF₂Cl [13] and CF₃SiH₃ [14]. The fact that the calculated SiC stretching force constant, 2.69 N cm⁻¹, exceeds that of CF₃SiH₃, 2.54 N cm⁻¹, is consistent with the lower positive charges in CHF₂SiH₃ both on the carbon and silicon atoms. The SiC force constant is, however, still considerably smaller than that of CH₃SiH₃, 2.98 N cm⁻¹ [16].

The large number of bands in the low wavenumber region of the spectra of $(CHF_2)SiH_2F$ and $(CHF_2)SiH_2Cl$ indicates that the compounds exist as a mixture of conformers.

Discussion

Difluorocarbene, which can be cleanly generated by thermolysis of CF_3SiF_3 , inserts readily and selectively into Si-H bonds of silanes provided the silicon atom carries a single halogen or oxygen atom as a further substituent. No evidence was

										l		
	δ(H(CHF ₂))	((HiS)H)§	<pre>&(F(CHF2))</pre>	8(C(CHF ₂)) ^b	δ(Si) ^c	² J(HCF)	³ /(FCSiH)	³ J(HCSiH)	$^{1}J(HC(F_{2}))$	(HiS)l	¹ J(CF)	² J(SiCF)
(CHF ₂)SiH ₃	5.81	3.53	-128.1	120.2	- 63.8	46.0	11.1	1.8	171.2	213.3	252.3	34.1
(CHF ₂)SiH ₂ F ^d	6.03	4.81	- 140.8	117.5	- 16.0	45.5	7.4 °	1.5	173.9	248.8	250.3	41.9
(CHF ₂)SiH ₂ Cl	6.01	4.75	- 135.0	118.3	- 24.8	46.0	7.7 *	1.7	173.8	251.8	254.4	42.2
(CHF ₂)SiH ₂ Br	5.92	4.66	-133.0	117.3	- 32.9	46.2	۲.9 د	1.7	174.7	251.9	255.7	42.2
(CHF ₂)SiH ₂ I	5.90	4.62	- 130.1	ſ	ſ	46.7	8.0 °	1.7	ļ	,	•	
(CHF ₂)(CH ₃)SiHCl ⁸	5.88	4.82	- 136.9	118.9	- 1.4	46.2	4.5/8.9	1.3	171.7	243.0	253.8	39.8
			-138.5									
(CHF ₂)(CH ₃)SiHBr ⁴	5.90	4.67	-134.9	118.8	- 7.9	46.4	4.8/9.2	1.2		246.1	253.8	40.3
			- 136.7									
(CHF ₂)(CH ₃) ₂ SiCl ¹	5.97	ł	- 138.5	119.7	18.3	46.3	I	I	J	1	253.9	37.1
[(CHF,)SiH ₂],0	5.55	4.43	- 138.6	119.4	- 32.4	45.8	8.0 °	1.3	170.1	239.8	251.9	39.3
(CHF,),SiH,	5.85	3.85	- 131.1		- 45.4	45.4	9.4 °	1.9			~	33.8
(CHF,),SiHF	5.75	4.94	- 142.8			45.4	•	,			<u>`</u>	
(CHF ₂) ₂ SiHCl	6.07	4.88	- 136.2			46.0	5.5	1.9				
(CHF ₂) ₂ SiHBr	5.96	4.88	- 134.2	116.3 '	-25.3	46.3	6.4	1.7			255.4	40.5
(CHF ₁) ₂ (CH ₁)SiCl "	5.96	I	- 137.5	117.4	1.0	45.7					253.2	38.0
			-138.3								253.4	
(CHF ₂) ₃ SiCl	6.16	ŀ	136.5			46.3	I	I				
⁴ Chemical shifts 8 in Hz. [*] (J(AX) + J(AX) 8(C(CH ₃)) - 5.9, 8(H Hz/+3.4 Hz, ⁴)(FCSi	ppm, coupling ())/2. ¹ Not de (CH ₃)) 0.68. ⁴ δ (CH) +0.5 Hz,	constants J stermined. ⁸ S(C(CH ₃)) - $\delta(H(CH3)) -$	in Hz. ^b In C ₆ 3(H ₃ CSiH) 3. 3.5, 8(H(CH ₃ 0.71.	D ₆ , δ 128.0. ^c F 2 Hz, ² J(FCF) .)) 0.67. ^k δ(F(S)	xt. std. 7 392.0 Hz iF) – 194	MS. ⁴ 8(F) 8(C(CH ₃) .2, ² J(FSiH	(SiF)) - 201 () - 5.8, 8(F) () 46.3 Hz.	.8, ¹ J(SiF) 29 H(CH ₃)) 0.62 ³ J(CSiC) 3.2	5.1 Hz, ² J(FS ^h ³ J(H ₃ SiCH Hz. ^m ² J(FCF	iH) 47.6 H) 3.3 Hz -) 402.1 H	Hz, ³)(FC , ²)(FCF , ⁴)(FCS	SiF) < 0.2) 387.8 Hz, iiCF) + 2.2

NMR data for (difluoromethyl)silanes ^a (δ ppm)

Table 3

255

l

1

;

I

| |

: |

;

ļ

:

1 7

1

) 1

ł

ļ

: |

ł

Table 4

IR, gas	Raman, liquid	Approximate description	Potential energy distribution				
2928 m, PQR	2940 w, p	ν(CH)	100 (CH)				
2211 vs	2210 sh	ν_{as} (SiH ₃) (a' , a'')	101 (SiH)				
2193 vs, PQR	2196 vs, p	$v_{\rm s}~({\rm SiH}_3)$	99 (SiH)				
1378 w	1363 w	$\delta(\text{HCF})(a'')$	99 (HCF)				
1326 m	1327 m, p	$\delta(\text{HCF})(a')$	45 (HCF), 4	0 (HCSi), 11 (CF),			
			10 (HCSi/H	ICF)			
1097 vs	1093 w, p	$\nu_{\rm s}~({\rm CF_2})$	64 (CF), 13	(FCF)			
1035 vs	1016 w	$\nu_{\rm as}~(\rm CF_2)$	133 (CF), -1	15 (CF/CF')			
941 s	937 m	δ_{as} (SiH ₃) (a', a'')	109 (HSiH)				
907 vs	910 sh	δ_{s} (SiH ₃)	48 (HSiC), 4	15 (HSiH), 18 (HSiH	/HSiC)		
766 m, PQR	763 s, p	$\rho(\text{SiH}_3)(a')$	35 (SiC), 33	(HSiC), 11 (FCSi)			
631 m	634 m	$\rho(\text{SiH}_3)(a'')$	90 (HSiC)				
587 w	589 vs, p	v(SiC)	48 (SiC), 46	(HSiC)			
481 m, PQR	486 m, p	δ(CF ₂)	64 (FCF), 12	2 (HCSi)			
301 m, PQR	305 s, p	$\omega(CF_2)$	46 (FCSi), 18 (HCSi), 15 (SiC), 14 (HCF),				
			11 (HCSi), -12 (FCSi/HCSi), -12 (F'CSi/HCSi)				
222 w	-	$\tau(CF_2)$	134 (FCSi), – 12 (CF/FCSi), – 12 (CF'/FCSi) – 19 (FCSi/FCSi)				
Force constants	7						
f(SiC)	2.69	f(FCF)	1.22	f(FCSi)	0.56		
f(CF)	5.37	f(HSiC)	0.48	f(HSiH)	0.48		
f(CH)	4.70	f(HCF)	0.81	f(HCSi)	0.45		

Infrared and Raman spectra ^a, potential energy distribution ^b, and diagonal force constants ^c of CHF₂SiH₃

^a In cm⁻¹. ^b Contributions >10%. ^c In N cm⁻¹, scaled to 100 pm.

found for incorporation into any other silicon-element bond. This contrasts with the reported insertion of CF_2 (generated from Me₃SnCF₃) into the Si–Si bond of FMe₂Si–SiMe₂F to yield the carbasilane (FMe₂Si)₂CF₂ [17].

Since the insertion reaction must compete with the oligomerization of CF_2 to form C_2F_4 and cyclo- C_3F_6 , a high yield of the CHF_2Si derivative implies that the insertion rate is relatively high. Thus CF_2 inserts most rapidly into the Si-H bonds of silvl halides SiH₃X. Replacement of one or two hydrogen atoms by methyl groups lowers the insertion rate significantly, and this rate becomes barely detectable for phenylchlorosilanes. A second CF_2 group inserts more slowly than the first at the same silicon atom. This is underlined by the favoured formation of $(CHF_2SiH_2)_2O$ with respect to $(CHF_2)_2SiHOSiH_3$.

Although the Si-H bond character of CF_3SiH_3 is similar to that of SiH₃Cl and SiH₃Br, CF₂ does not insert into the Si-H bonds of CF_3SiH_3 . This suggests that neither the polarity of the Si-H bond nor the charge on the Si atom are of crucial importance for the reactivity towards CF_2 . On the other hand, the presence on silicon of a substituent with available lone pairs seems to be necessary for a sufficiently fast CF_2 insertion rate. This observation may be rationalized by a mechanism in which insertion is preceded by formation of a donor-acceptor

complex A:

Such a charge transfer interaction is favoured by the low-lying acceptor orbital of singlet-CF₂, and has also been suggested by ab initio calculations for the insertion of CH₂ and CF₂ [18]. The introduction of CF₂ is followed by Si-C bond formation (**B**) by interaction of the CF₂ HOMO with an empty orbital at Si ($\sigma^{\star}(SiH)$). This step is assisted by a positive charge on the silicon atom and the polarity Si - H. The latter facilitates hydride transfer to carbon with concomitant loss of the C-X overlap. Bulky substituents attached to the Si atom will both reduce the stability of the charge transfer complex **A** and hinder Si-C bond formation.

The proposed mechanism makes the failure of CF_2 to insert into $(H_3Si)_3N$ understandable. The nitrogen lone pair of the planar NSi_3 skeleton is generally not available for coordination, and the positive charge on silicon, which assists Si-C bond formation, is smaller than in silvl fluoride and disiloxane [19].

The reluctance of dihalosilanes SiH_2X_2 to insert CF_2 cannot be ascribed to enhanced steric shielding. Furthermore, the effect of the second halide on the charge distribution is not likely to be crucial in view of the fact that CF_2 can be forced to insert into $(CHF_2)_2SiHCl$, and so CF_2 should be able to form an adduct with SiH_2X_2 . However, this adduct apparently cannot rearrange to a transition state capable of hydrogen transfer, such as **B**. This may be the case if the adduct is formed by donation of electrons from the b_2 MO of SiH_2X_2 , which is formed by the lone pairs of the two X atoms, into the CF_2 LUMO.

The possibility that formation of a charge transfer complex A may precede insertion of CF_2 into a Si–Si bond is also suggested by the behaviour of $Me_3SiSiMe_3$. This, in contrast to $FMe_2SiSiMe_2F$ [17], gave no CF_2 insertion products when treated according to our standard procedure with CF_3SiF_3 , or under more forcing conditions [17] with Me_3SnCF_3 .

Apparently these vigorous conditions (~ $160 \,^{\circ}$ C) do not make Me₃SnCF₃ a more efficient reagent for CF₂ insertion into silicon-element bonds. Thus, after 3 days at 160 $^{\circ}$ C, the reaction of Me₃SnCF₃ with Me₃SiCl yielded Me₃SnCl and Me₃SiF along with C₂F₄ and cyclo-C₃F₆, while that with HSiCl₃ gave only Me₃SnCl, SiF₄, C₂F₄ and cyclo-C₃F₆ - no CF₂ClSiHCl₂ or CHF₂SiCl₃ being detected.

Keeping in mind the thermal instability of fluoromethylsilanes, the main advantage of CF_3SiF_3 with regard to Me_3SnCF_3 for CF_2 insertion reaction are the mild

conditions under which a Si–C bond can be formed. These conditions allow the insertion products to survive, which makes the reported insertion reactions useful for syntheses of hitherto inaccessible CHF_2Si derivatives on a preparative scale.

Experimental

Volatile materials were handled in a standard vacuum system equipped with greaseless valves. Gas volumes and vapour pressures were measured with a MKS Baratron 315 BHS pressure gauge. NMR spectra were recorded with a Varian EM 390 (¹H, 90.0 MHz; ¹⁹F, 84.7 MHz) and a Bruker AC 250 spectrometer (¹H 250.13 MHz; ¹⁹F, 235.36 MHz; ¹³C, 62.90 MHz; ²⁹Si, 49.70 MHz). Infrared spectra were recorded with a Perkin Elmer 580 B spectrometer with 10 cm gas cells, and Raman spectra with a Cary 82 model, excitation Kr⁺ 647.1 nm.

Starting materials. Silyl halides were obtained by cleavage of arylsilanes with gaseous HX, SiH₃F by fluorination of SiH₃Br with SbF₃ at -30° C. Dichlorosilane was prepared from SiH₃Cl and SnCl₄ (ratio 1/1.3) at 100°C, di- and tri-fluorosilane by low-temperature fluorination of corresponding chlorides with SbF₃. Methyl-chloro- and -bromo-silanes were obtained from the corresponding methyl-silanes and stoichiometric amounts of SnCl₄ or SnBr₄, in sealed ampoules at 100°C. Me₃SnCF₃ was prepared as previously described [20].

(Trifluoromethyl)trifluorosilane. Under an atmosphere of CF_3Br , 253 g (1.02 mol) $P(NEt_2)_3$ were added at 0°C during 2 h to a solution of 170 g (1.00 mol) $SiCl_4$ in 200 ml benzonitrile. After 2 h of vigorous stirring at 0°C all volatile products were evaporated off in vacuo during 2 days and condensed at -78°C while the reaction mixture was slowly warmed to 40°C. Isothermal distillation yielded 102.5 g (0.50 mol) CF_3SiCl_3 . This was converted to CF_3SiF_3 with a yield of 62% by treatment with a twofold excess of freshly sublimated SbF_3 in dibutyl ether under 0.8 bar of dry nitrogen as the temperature was raised from -78°C to -45°C. The product obtained after passing the volatile products through a -126°C trap was contaminated with SiF_4 (15%) and traces of CF_3SiF_2Cl .

(Difluoromethyl)silanes, general procedure. The appropriate silane and CF_3SiF_3 were co-condensed either into a 4 mm o.d. glass ampoule (volume 1.2 ml) or, for preparative scale experiments, into stainless steel cylinders equipped with Hoke valves. After 2 h heating at 100 °C the products were either identified by NMR spectroscopy, or separated by fractional condensation in vacuo from the more volatile materials, which consisted mainly of SiF₄, cyclo-C₃F₆ and C₂F₄.

No indication for CF_2 insertion was found in the reaction with SiH_4 , $MeSiH_3$, Me_2SiH_2 , Me_3SiH , $PhSiH_3$, SiH_2F_2 , SiH_2Cl_2 , SiH_2Br_2 , $SiHCl_3$, $MeSiHCl_2$, Me_2SiCl_2 , Me_3SiCl , Me_3SiBr , $SiCl_4$, $SiBr_4$ and $Me_3SiSiMe_3$. Decomposition of the silane was observed in the case of SiH_3CN and $Et_2NSiHCl_2$.

Reactions with Me_3SnCF_3 . Ca. 4 mmol Me_3SnCF_3 and ca. 3.5 mmol of the silane were condensed in a 30 ml glass ampoule and the mixture was heated to 160 °C for 3 days. Volatile products were evaporated off, separated by fractional condensation in vacuo, and investigated by IR and NMR spectroscopy.

(a) From Si_2Me_6 , ca. 3.5 mmol $SnMe_4$ were obtained and, in addition, C_2F_4 , cyclo- C_3F_6 and Me_3SiF in a 3:1:1 molar ratio. Traces of material revealing peaks in the ¹⁹F NMR spectrum at -24.0 s, -42.8 s, and -64.3 ppm, s, were found in the -78°C trap.

(b) Me₃SiCl formed ca. 4 mmol Me₃SnCl, 3 mmol Me₃SiF, and C_2F_4 and cyclo- C_3F_6 in a molar ratio of ca. 1:1.

(c) HSiCl₃ converted Me₃SnCF₃ quantitatively into Me₃SnCl. 3 mmol volatile products collected in a -196 °C trap consisted of SiF₄, C₂F₄ and cyclo-C₃F₆ in a 2:3:2 molar ratio. Weak additional peaks were observed in the ¹⁹F NMR spectrum at -143.7 s, -120.5 s, and -81.7 ppm, d.

(Difluoromethyl)fluorosilane. B.p. 45° C; ln p (mbar) = -3100/T (K) + 16.670; M, by gas density, found 101.3 (calcd. 101.1). IR see Ref. 12. Additional far infrared absorptions (cm⁻¹): 547 w, 400 m, 279 m. Raman, liquid (cm⁻¹) 2960 m, p, 2235 sh, 2218 vs, p, 1400 w, 1333 s, p, 1100 m, p, ν_s (CF₂), 1015 m, ν_{as} (CF₂), 950 w, p, 920 w, 901 w, p, ν (SiF), 777 m, 727 m, 661 vs, p, ν (SiC), 598 w, 547 s, p, δ (CF₂), 393 m, p, 296 m, p, 260 vs, p, 230 m, 192 w.

(Difluoromethyl)chlorosilane. B.p. 27°C; ln p (mbar) = -3482/T (K) + 18.536; *M*, by gas density, found 114.0 (calcd. 116.6). IR, gas (cm⁻¹) 2938 m, PQR, ν (CH), 2229 vs, ν_{as} (SiH₂), 2217 vs, ν_{s} (SiH₂), 1385 w, 1324 m, PQR, 1094 s, PQR, $\Delta\nu$ (PR) 11 cm⁻¹, ν_{s} (CF₂), 1037 vs, ν_{as} (CF₂), 936 s, PQR, 880 s, 847 vs, PQR, $\Delta\nu$ (PR) 10 cm⁻¹, 795 vw, 721 m, 674 w, PQR, ν (SiC), 587 m, 562 s, PQR, $\Delta\nu$ (PR) 10 cm⁻¹, ν (SiCl), 498 m, PQR, 286 m, 256 w. Raman, liquid (cm⁻¹) 2955 m, p, 2220 vs, p, 1330 s, p, 1101 m, p, 1030 w, 936 w, p, 848 vw, 782 s, 719 m, p, 664 m, p, 564 vs, p, 520 vs, p, 418 w, 324 s, p, 293 s, p, 261 s, p, 173 m, 124 s.

(Difluoromethyl)methylchlorosilane. B.p. 62° C; ln p (mbar) = -3241/T (K) + 16.600; M, by gas density, found 125.5 (calcd. 130.6). IR, gas (cm⁻¹) 2982 m, 2932 m, 2922 sh, 2208 vs, ν (SiH), 1409 vw, 1324 s, 1270 s, δ_s (CH₃), 1095 s, ν_s (CF₂), 1025 vs, ν_{as} (CF₂), 887 s, 839 sh, 834 vs, ρ (CH₃), 829 sh, 784 m, 758 w, 684 vw, 644 vw, 541 sh, 535 s, ν (SiCl), 368 w, 317 m, 313 w, 307 w, 282 vw, 202 m. Raman, liquid (cm⁻¹) 2987 w, 2921 m, 2211 vs, 1410 w, 1331 sh, 1325 m, 1267 w, 1090 m, 1016 w, 881 w, 832 w, 778 w, 757 m, 745 sh, 690 m, 673 w, 644 s, 642 sh, 542 s, 525 vs, 452 m, 380 sh, 370 m, 315 s, 310 m, 284 s, 262 w, 203 s, 185 m, 158 w, 125 w.

(Difluoromethyl)methylbromosilane. M, by gas density, found 171.3 (calcd. 175.1). IR, gas (cm⁻¹) 2984 w, 2935 m, 2929 sh, 2208 vs, ν (SiH), 1408 w, 1320 s, 1265 s, δ_s (CH₃), 1129 m, 1092 vs, ν_s (CF₂), 1024 vs, ν_{as} (CF₂), 886 vs, 826 vs, ρ (CH₃), 780 s, 744 s, 695 w, 643 m, 535 w, 440 vs, ν (SiBr), 414 w, 365 m, 305 w, 256 w. Raman, liquid (cm⁻¹) 2985 m, 2919 s, 2207 vs, 1412 m, 1325 m, 1264 m, 1089 m, 1010 m, 908 w, 877 w, 823 w, 795 w, 778 w, 751 s, 729 sh, 682 s, 643 vs, 583 m, 546 m, 531 w, 437 vs, 410 vs, 382 s, 366 m, 310 s, 260 vs, 222 w, 187 s, 119 sh, 110 s.

(Difluoromethyl)dimethylchlorosilane. B.p. 90 °C; ln p (mbar) = -3582/T (K) +16.793; M, by gas density, found 144.2 (calcd. 144.6). IR, gas (cm⁻¹) 2980 m, 2927 m, 1411 w, 1331 w, 1323 m, 1318 m, 1269 sh, 1264 s, δ_s (CH₃), 1126 sh, 1095 s, ν_s (CF₂), 1019 vs, ν_{as} (CF₂), 848 vs, ρ (CH₃), 822 sh, 814 vs, 809 sh, 762 w, 714 m, 692 w, 644 m, 547 m, 541 m, 509 s, ν (SiCl), 472 w, 347 m, 296 w, 216 m, 196 w. Raman, liquid (cm⁻¹) 2982 w, 2918 s, 1408 w, 1332 w, 1323 m, 1268 w, 1090 w, 1005 w, 813 w, 713 m, 692 m, 647 vs, 545 m, 506 vs, 469 m, 367 m, 350 s, 300 m, 223 s, 203 s, 147 m, 123 m.

(Difluoromethyl)silane. 1.97 mmol (CHF₂)SiH₂Cl were condensed onto a suspension of 320 mg (8.43 mmol) LiAlH₄ in 5 ml di-n-butylether, the mixture then warmed to -20 °C and stirred for 15 min. The product was evaporated off and purified in a vacuum line by passing through a -126 °C trap. Yield 1.95 mmol

(99%) (CHF₂)SiH₃, b.p. -15° C; ln p (mbar) = 2999/T (K) +18.515; M, by gas density, found 81.3 (calcd. 82.1).

Acknowledgements

Support by the Fonds der Chemie and the Ministerium für Wissenschaft und Forschung NW is gratefully acknowledged.

References

- 1 Gmelin, Handbuch der Anorganischen Chemie, Vol. 15, Part C, pp. 117, 138, 175.
- 2 I. Ruppert, K. Schlich and W. Volbach, Tetrahedron Lett., 25 (1984) 2195.
- 3 H. Beckers, H. Bürger, P. Bursch and I. Ruppert, J. Organomet. Chem., 316 (1986) 41.
- 4 H. Beckers, H. Bürger and R. Eujen, Z. Anorg. Allg. Chem., 563 (1988) 38.
- 5 (a) K.G. Sharp and T.D. Coyle, J. Fluorine Chem., 1 (1971) 249; (b) J.L. Margrave, K.G. Sharp and P.W. Wilson, J. Inorg. Nucl. Chem., 32 (1970) 1817.
- 6 M. Lenzi and A. Mele, J. Chem. Phys. 43 (1965) 1974.
- 7 R.A. Mitzsch, J. Heterocycl. Chem., 1 (1964) 59.
- 8 F.W. Dalby, J. Chem. Phys., 41 (1964) 2297.
- 9 (a) H.C. Clark and C.J. Willis, J. Am. Chem. Soc., 82 (1960) 1888; (b) D. Seyferth, H. Dertouzos, R. Suzuki and J.Y.P. Mui, J. Org. Chem., 32 (1967) 2980.
- 10 J.M. Birchall, G.E. Cross and R.N. Haszeldine, Proc. Chem. Soc., 81 (1960).
- 11 D. Seyferth and S.P. Hopper, J. Org. Chem., 37 (1972) 4070.
- 12 H. Beckers and H. Bürger, J. Organomet. Chem., 385 (1990) 207.
- 13 H.B. Weissman, A.G. Meister and F.F. Cleveland, J. Chem. Phys., 29 (1958) 72; J.V. Magill, K.M. Gough and W.F. Murphy, Spectrochim. Acta, Part A, 42 (1986) 705.
- 14 H. Beckers, H. Bürger, R. Eujen, B. Rempfer and H. Oberhammer, J. Mol. Struct., 140 (1986) 281.
- 15 D. Christen, J. Mol. Struct., 48 (1978) 101.
- 16 C.S. Ewig, W.E. Palke and B. Kirtmann, J. Chem. Phys., 60 (1974) 2749.
- 17 G. Fritz and H. Bauer, Angew. Chem., 95 (1983) 740.
- 18 N.G. Rondan, K.N. Houk and R.A. Moss, J. Am. Chem. Soc., 102 (1980) 1770; K.N. Houk, N.G. Rondan and J. Mareda, Tetrahedron, 41 (1985) 1555.
- 19 M.J.S. Dewar and C. Jie, Organometallics, 6 (1987) 1486; L. Noodleman and N.L. Paddock, Inorg. Chem., 18 (1979) 354.
- 20 R.D. Chambers, H.C. Clark and C.J. Willis, J. Am Chem. Soc., 82 (1960) 5298.